指数・対数#

べき乗#

基本#

\[ a^1 = a\]
\[ a^0 = 1\]
\[ a^{-1} = \dfrac{1}{a}\]
\[ a^{-n} = \dfrac{1}{a^n}\]
\[ a^{\frac{1}{2}} = \sqrt{a}\]
\[ a^{\frac{1}{n}} = \sqrt[n]{a}\]
\[ a^{\frac{m}{n}} = \sqrt[n]{a^m}\]

Note

べき乗の指数が自然数の場合を累乗と言う

指数法則#

\(a,b\)を任意の数、\(m,m\)を正の整数とすると

\[a^m \times a^n = a^{m+n}\]
\[a^m \div a^n = a^{m-n}\]
\[(a^m)^n = a^{mn}\]
\[(ab)^n = a^n b^n\]
\[(\dfrac{a}{b})^n = \dfrac{a^n}{b^n}\]

対数関数#

定義#

\(a > 0, a \neq 1, M > 0\) の時

\[ a^p = M \Longleftrightarrow \log_a M = p \]

“log of \(M\) to the base \(a\)” – https://you-eigo.com/logarithms/

公式#

\(a > 0, a \neq 1, M > 0\) の時

\[ \log_a a = 1 \]
\[ \log_a 1 = 0 \]
\[ \log MN = \log M + \log N\]
\[ \log \dfrac{M}{N} = \log M - \log N \]
\[ \log M^r = r \log M\]

底の変換公式#

\(a, b, c > 0, a, b, c \neq 1\) の時

\[\log_a b = \dfrac{\log_c b}{\log_c a}\]
\[\log_a b = \dfrac{1}{\log_b a}\]

自然対数#

\[ \ln x = \log_e x\]
\[ \ln exp(x) = \log_e e^{x} = x\]