Regression
Contents
Regression#
xgb#
import xgboost as xgb
params = {
'objective': 'reg:squarederror',
'random_state':42,
'eval_metric': 'rmse',
'verbosity': 0,
'gpu_id':0,
'tree_method':'gpu_hist',
}
num_round = 1000
dtrain = xgb.DMatrix(X_train, label=y_train)
dvalid = xgb.DMatrix(X_valid, label=y_valid)
model = xgb.train(
params, dtrain, num_round,
early_stopping_rounds=100,
verbose_eval = 100,
evals=[(dtrain, 'train'), (dvalid, 'eval')])
ligtgbm#
import lightgbm as lgb
params0 = {
'objective': 'rmse',
'seed': 42,
'boosting_type': 'gbdt',
'n_jobs':-1,
'verbose': -1}
train_weights = 1 / np.square(y_train)
valid_weights = 1 / np.square(y_valid)
train_dataset = lgb.Dataset(x_train, y_train, weight = train_weights)
valid_dataset = lgb.Dataset(x_valid, y_valid, weight = valid_weights)
model = lgb.train(params = params,
num_boost_round=1000,
train_set = train_dataset,
valid_sets = [train_dataset, val_dataset],
verbose_eval = 50,
early_stopping_rounds=50,
feval = feval_rmspe)